
Realisation of orbital angular momentum sorter of photons based on sagnac interferometer
Author(s) -
Dongzhi Fu,
Jing Jia,
Yingnan Zhou,
DongXu Chen,
Hong Gao,
Fuli Li,
Pei Zhang
Publication year - 2015
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.64.130704
Subject(s) - physics , interferometry , angular momentum , superposition principle , photon , optics , quantum cryptography , astronomical interferometer , quantum entanglement , quantum channel , orbital angular momentum of light , quantum mechanics , quantum , quantum information , total angular momentum quantum number
Orbital angular momentum (OAM) of photons has both classical and quantum applications due to its feature of optical vortex and infinite dimension. OAM discrimination is one of the basic problems, which has been paid much attention recently. Here we present an interferometer method in which a Sagnac interferometer with a Dove prism is placed on each arm to separate the different OAM of photons into different output ports, namely, OAM sorters. We demonstrate experimentally the feasibility of OAM sorter by dividing different OAM states into different output ports. Using the cascade interferometers, we also sort the superposition state successfully. Experimental results are in good agreement with the theoretical predictions. Compared with other methods, this method is more stable and can be used to separate superposition states into single photon levels. Furthermore, this method can also be used to couple OAM modes with spatial modes, a very important method for manipulating OAM states. It is a useful method and has potential applications in high-capacity optical communication, quantum entanglement, quantum cryptography, quantum computation and quantum information.