z-logo
open-access-imgOpen Access
Finite-temperature properties of N two-level atoms in a single-mode optic cavity and phase transition
Author(s) -
Shaofeng Jia,
Liang Jiu-Qing
Publication year - 2015
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.64.130505
Subject(s) - quantum phase transition , physics , phase transition , condensed matter physics , quantum critical point , path integral formulation , quantum mechanics , coupling constant , quantum , quantum electrodynamics
In this paper, we investigate the finite-temperature properties and phase transition of the Dicke model. Converting the atomic pseudo-spin operator to the two-mode Fermi operators, we obtain the partition function in terms of the imaginary-time path integral. The atomic population and average photon number as analytic functions of the atom-photon coupling strength are found from the thermodynamic equilibrium equation, which leads to the stationary state at a finite temperature and is determined by the variation in an extremum-condition of the Euclidean action with respect to the bosonic field. In particular we study the phase transition from normal to superradiation phase at a fixed low-temperature, in which the phase transition is dominated by quantum fluctuations. The phase transition induced by the variation of the atom-photon coupling strength indeed obeys the Landau continuous phase-transition theory, in which the average photon-number can serve as an order parameter with non-zero value that characterizes the superradiation phase. In the zero temperature limit our results recover exactly all those obtained from the quantum phase transition theory at zero temperature. In addition, we discuss the thermodynamic properties and compare the difference between finite-temperature phase transition and zero-temperature quantum phase transition. It is discovered that the average photon-number and mean energy in the low-temperature stationary state coincide with the corresponding values of zero-temperature in the strong coupling region. The entropy of the superradiation phase decays rapidly to zero with the increase of coupling strength.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here