z-logo
open-access-imgOpen Access
Bit error rate analysis of X-ray communication system
Author(s) -
Wang Lu-Qiang,
Tong Su,
Bin Zhao,
Lizhi Sheng,
Yongan Liu,
Duo Liu
Publication year - 2015
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.64.120701
Subject(s) - computer science , bit error rate , communications system , detector , optical communication , free space optical communication , electronic engineering , real time computing , telecommunications , optics , physics , channel (broadcasting) , engineering
X-ray communication, which was firstly introduced by Keithe Gendreau in 2007, is potential to compete with conventional communication methods, such as microwave and laser communication, against space surroundings. As a result, a great deal of time and effort has been devoted to making the initial idea into reality in recent years. Eventually, the X-ray communication demonstration system based on the grid-controlled X-ray source and microchannel plate detector can deliver both audio and video information in a 6-meter vacuum tunnel. The point is how to evaluate this space X-ray demonstration system in a typical experimental way. The method is to design a specific board to measure the relationship between bit-error-rate and emitting power against various communicating distances. In addition, the data should be compared with the calculation and simulation results to estimate the referred theoretical model. The concept of using X-ray as signal carriers is confirmed by our first generation X-ray communication demonstration system. Specifically, the method is to use grid-controlled emission source as a transceiver while implementing the photon counting detector which can be regarded as an important orientation of future deep-space X-ray communication applications. As the key specification of any given communication system, bit-error-rate level should be informed first. In addition, the theoretical analysis by using Poisson noise model also has been implemented to support this novel communication concept. Previous experimental results indicated that the X-ray audio demonstration system requires a 10-4 bit-error-rate level with 25 kbps communication rate. The system bit-error-rate based on on-off keying (OOK) modulation is calculated and measured, which corresponds to the theoretical calculation commendably. Another point that should be taken into consideration is the emitting energy, which is the main restriction of current X-ray communication system. The designed experiment shows that the detected X-ray energy is 7×10-5 mW/m2. This relatively low power level not only restricts the bit rate of transceiver, but also increases the error fraction to some extent. Obviously, OOK modulation can meet the high communication rate and relatively low bit-error-rate requirement of current audio demo system. Current restriction has been pointed out and the potential improvement is also presented.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here