
Simulation and experiment for electrode capacitance based on Vernier anode photon counting detector
Author(s) -
Xiaojun Yan,
Bo Chen,
Haifeng Wang,
Hongji Zhang,
He Ling-Ping,
Jin Fang-Yuan
Publication year - 2015
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.64.080702
Subject(s) - capacitance , materials science , anode , preamplifier , differential capacitance , noise (video) , detector , vernier scale , electrode , optics , optoelectronics , physics , computer science , amplifier , cmos , quantum mechanics , artificial intelligence , image (mathematics)
According to the principle of Vernier anode photon counting detector, in this paper we discuss a decoding algorithm of calculating centroid location and interelectrode capacitance between electrodes, which has a close relationship with preamplifier circuit noise. Based on the Poisson's equation, the theoretical model of Vernier anode is established. The method of calculating the irregular shape uniplanar self-capacitance and interelectrode capacitance between electrodes using ANSYS finite element analysis is introduced. In addition, a Vernier anode plate is manufactured with picosencond laser micromachining process on a 1.5 mm thick quartz substrate with gold film as conductors. The Vernier anode pattern has a picth of 9.9 mm, an active area of 19.8 mm×19.8 mm, insulation channel depth of 10 μm, and insulation channel width of 30 μup$m. Comparing the simulated capacitances with the measured capacitances, the validity of the three-dimensional finite-element method is proved. A simulation study on the effects of substrate permittivity, insulation channel width and depth on capacitance change is carried out. The simulation result provides a basis for structure design of Vernier anodes.