
Characteristics of the geometrical scattering waves from underwater target in fractional Fourier transform domain
Author(s) -
Xiukun Li,
Meng Xing,
Zhi Xiong
Publication year - 2015
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.64.064302
Subject(s) - fourier transform , scattering , underwater , optics , fractional fourier transform , physics , frequency domain , time domain , acoustics , computational physics , fourier analysis , mathematical analysis , computer science , mathematics , geology , computer vision , oceanography , quantum mechanics
The components of the underwater target scattering waves alias together in time domain and frequency domain realistically. They are affected by the incident angle, and show great differences under different angles. It is necessary to build an analytical model of scattering waves under all-direction incident angles theoretically. The analytical expressions of geometrical scattering components changing with the incident angle in fractional Fourier transform domain are deduced in this paper. The all-direction model in optimal fractional Fourier transform domain of the scattering waves is built. Based on this, the geometrical feature of underwater target echo is provided. In addition, the relationships between the resolution and the bandwidth of transmitted signal, and between the calculation accuracy and the length of observational signal are given. By processing experimental data, it is indicated that the model in fractional Fourier transform domain is in accordance with the characteristics of underwater target. It can provide a theoretical basis for target recognition under unknown incident angle.