Simulation of pedestrian push-force in evacuation with congestion
Author(s) -
Lei Zhang,
Yue Hao,
Li Mei,
Shuai Wang,
Mi Xue-Yu
Publication year - 2015
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.64.060505
Subject(s) - pedestrian , computer science , scalar (mathematics) , mechanics , simulation , physics , mathematics , engineering , transport engineering , geometry
The simulation of pedestrian push-force in evacuation with arched congestion before exit is presented based on cell automata. The generation, absorption, transfer and gather of pedestrian push-force are analyzed. Initial push-force facing to exit is generated based on the distance between pedestrian and exit. The scalar and vector sum of push-force are introduced to respectively describe the push effect and resultant force of outside jam push-force in crowded evacuation. Absorption coefficient and anti-crush coefficient are introduced to respectively describe the ability for pedestrian to absorb and resist the outside jam push-force. Simulation results show that the increase of absorption coefficient or anti-crush coefficient can effectively prevent pedestrian from being injured. It is found that three phases: weak protection, strong protection and complete protection are distinguished based on two critical absorption coefficients and an anti-crush coefficient. Pedestrian casualties will increase with the number of evacuation pedestrian rising. It is also shown that pedestrian casualties in jam occur in a reverse bell-shape symmetry zone before exit.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom