z-logo
open-access-imgOpen Access
Investigation of thermodynamic properties of weakly interacting Fermi gas in weakly magnetic field by using the N-E-V distribution and pseudopotential method
Author(s) -
李鹤龄,
王娟娟,
Bin Yang,
沈宏君
Publication year - 2015
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.64.040501
Subject(s) - physics , condensed matter physics , heat capacity , pseudopotential , fermi gas , phase transition , magnetic field , thermodynamics , quantum mechanics , electron
Based on the fact that most of low temperature experiments of quantum systems are explored in an external field on condition that the particle numbers, volumes and energies of systems may be changed, the thermodynamic properties of weakly interacting Fermi systems in weak magnetic field are studied by using the statistical distribution of the completely open system with variable particle number, volume, and energy (N-E-V distribution). Firstly, the analytical expressions of internal energy and heat capacity, which are in the Fermi integral form, are obtained in the general case, and the analytical expressions and numerical results of energy and heat capacity are given under the extreme condition of supper-low temperature. The calculation results by the N-E-V distribution (with particle number density being variable) are compared with those by a pseudopotential method (with particle number density being unchanged). It can be found that the deviations of the internal energy and heat capacity calculated by the two different methods are very small, and the N-E-V distribution method can partially compensate for the error caused by the pseudo potential method. The most interesting point of the results obtained by the N-E-V distribution method is that there is a phase transition temperature in the weakly interacting Fermi system in weak magnetic field under the low temperature condition. The phase transition temperature is just in the range where occur the Fermi systems, Bose-Einstein condensation (BEC), Bardeen-Cooper-Schrieffer (BCS) phase transition, and BEC-BCS crossover, and does not vary with strength nor characteristic (attraction or repulsion) of the weak interaction, but it decreases with the strengthening of the external magnetic. When there is no external magnetic, the phase transition temperature is highest (more than 0.184 times Fermi temperature).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here