
Design of dually foveated imaging optical system
Author(s) -
Chengliang Feng,
Jun Chang,
Haibo Yang
Publication year - 2015
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.64.034201
Subject(s) - computer science , optics , resolution (logic) , field of view , image resolution , computer vision , artificial intelligence , field (mathematics) , focal length , focus (optics) , image quality , image (mathematics) , physics , mathematics , pure mathematics , lens (geology)
With the advances in technology, how to solve the problem of contradiction between the large field of view and high resolution of images becomes one of the research focus of many scientific researchers. In this paper we present the concept of dually foveated imaging optical system, based on the traditional singly foveated imaging system which simulates the human eye, by introducing a reflective liquid crystal spatial light modulator for modulating the aberrations of two fields of a view, so improving the corresponding aberrations and achieving high-resolution image of the two different fields of view, while the remaining fields of the view are of low-resolution image. In this way it can solve the contradiction between the large field of view and high resolution image. In this paper, we design a dually foveated imaging optical system with the following parameters: reference wavelength is 587 nm, the field of view is 60° (i.e., ± 30°), F/8, the focal length is 60 mm. Simulation is conducted by CODE V, achieving a 5° and 17° dual field high-resolution image, and the remaining field being of low-resolution image; and calculation shows the high diffraction efficiency of the system with sampling resolution of 32 × 32, verifying the scientificness and accuracy of the design method.