“Inverted-image” frequency chirp induced by self-phase modulation in highly noninstantaneous medium
Author(s) -
Hong Wei-Yi
Publication year - 2015
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.64.024214
Subject(s) - chirp , modulation (music) , envelope (radar) , phase (matter) , pulse (music) , physics , optics , nonlinear system , phase modulation , chirp spread spectrum , acoustics , computer science , telecommunications , channel (broadcasting) , laser , quantum mechanics , detector , radar , spread spectrum , direct sequence spread spectrum
Nonlocal nonlinearity is one of the hottest topics in the nonlinear optics and even the nonlinear science. In this paper, the frequency chirp induced by the self-phase modulation (SPM) in a high noninstantaneous medium is investigated. It is found that the temporal distribution of the SPM-induced chirp can be approximated by the “inverted image” of the pulse intensity in the highly noninstantaneous limit. Moreover, this property does not depend on the envelope of the pulse. By using these properties, the temporal characteristics of the pulse propagation in a highly noninstantaneous medium is analyzed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom