z-logo
open-access-imgOpen Access
A blending crossover differential evolution approach to camera space manipulation parameter optimization
Author(s) -
Yu Xie,
Zhao Chun-xia,
Haofeng Zhang,
Xuejun Yan,
Debao Chen
Publication year - 2015
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.64.020701
Subject(s) - crossover , differential evolution , flattening , parameter space , computer science , evolutionary algorithm , fitness function , differential (mechanical device) , set (abstract data type) , function (biology) , algorithm , artificial intelligence , mathematics , genetic algorithm , physics , geometry , astronomy , machine learning , evolutionary biology , biology , thermodynamics , programming language
A blending crossover differential evolution algorithm is proposed to increase the precision of camera-space manipulation (CSM) system. In this approach, six view parameters and flattening parameter are assembled into a single parameter of blending crossover differential evolution; the positioning precision of camera-space manipulation is set to be a fitness function.The CSM system can obtain the optimal parameter combination by evolutionary iteration.Experimental results of a virtual robot system show the robot positioning precision is improved by blending crossover differential evolution algorithm.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here