
Entanglement evolution of three interacting twolevel atoms within a common environment
Author(s) -
Feng Liu,
YunJie Xia
Publication year - 2015
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.64.010302
Subject(s) - quantum entanglement , physics , excited state , time evolution , quantum mechanics , population , quantum , statistical physics , limit (mathematics) , dipole , mathematics , mathematical analysis , demography , sociology
Entanglement dynamical evolution of three two-level atoms coupled to a common environment is investigated. We utilize the tripartite negativity to quantify entanglement and analyze the effect of the initial state, pairwise dipole-dipole interactions on the entanglement dynamical properties of the system by means of numerical calculations. Results show that a novel quantum interference can be controlled by the relative phase of initially entangled states of the atoms. And the excited-state population can be trapped in the long time limit. Besides, the tripartite entanglement can be enhanced by choosing the appropriate conditions.