
Thermochromic properties of W-doped VO2/ZnO nanocomposite films with flower structures
Author(s) -
朱慧群,
Li Yi,
叶伟杰,
李春波
Publication year - 2014
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.63.238101
Subject(s) - materials science , nanocomposite , doping , x ray photoelectron spectroscopy , thermochromism , thin film , transmittance , analytical chemistry (journal) , scanning electron microscope , nanotechnology , composite material , chemical engineering , optoelectronics , condensed matter physics , chemistry , chromatography , engineering , physics
Based on the nanocomposite structure and doping modification, we have studied the preparation technology of high performance nanocomposite thin film and its characterization methods. The W-doped VO2/ZnO nanocomposite thin films are prepared successfully on SiO2 substrates by the three-step method. The structure and morphology of the W-doped VO2/ZnO/SiO2 films are analyzed by X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscope. Results show that the films are mainly composed of VO2 and high valence cation W6+ replacing the V ion in the W-doped VO2/ZnO/SiO2 films. It is found that the flake nanocrystallines resemble a flower in shape, and its size and orientational growth are reduced. The thermochromic properties of W-doped VO2/ZnO films are measured and compared with the single-layer W-doped VO2 films on SiO2 substrates with the same thickness. The variation of infrared transmittance of the W-doped VO2/ZnO/SiO2 nanocomposite film is increased nearly two times, the phase transition temperature reduced approximately to 39 °C, and the width of the thermal hysteresis loop is about 6 °C. The W-doped VO2/ZnO/SiO2 nanocomposite film has a high infrared modulation ability, a lower phase transition temperature, and a narrower thermal hysteresis loop. Thus the potential application of this nanocomposite film is significantly improved.