
Laser shadowgraphy diagnostics for insulated-ordinary mixed planar wire array Z pinches
Author(s) -
Liang Sheng,
Peng Bodong,
Yuan Yuan,
Mei Zhang,
Kuinian Li,
Xinjun Zhang,
Zhao Chen,
Jianlong Zhao,
Mo Li,
Peiwei Wang,
Li Yang
Publication year - 2014
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.63.235205
Subject(s) - shadowgraphy , implosion , optics , laser , materials science , z pinch , streak camera , plasma , physics , radiation , quantum mechanics
A laser shadowgraphy system was built based on a Nd:YAG laser backlight with a half width of 9 ns and a wavelength of 532 nm. It has the capacity of time resolution and integration simultaneously during the laser lighting time by utilizing a streak camera and a commercial digital camera as the image recording devices. Experimental study of the insulated-ordinary mixed planar wire array Z pinches was carried out on the Qiangguang-I facility. Experimental results indicate that the expansion of corona plasma of the insulated tungsten wires is slower than that of ordinary wires over the ablation stage. Average velocities of the insulated wire and the ordinary wire located at the array outmost edge are 1.1×104 m·s-1 and 1.7×104 m·s-1 between t=44 ns and t=56 ns respectively. In the fastest implosion stage of 10 ns just before the stagnant time, the average imploding velocities were 5.5×105 m·s-1 and 9.3×105 m·s-1 respectively for the plasma on the insulted wires side and the ordinary wires side. The duration of stagnant stage on the insulated wires side is 5.9 ns, while it is 9.5 ns on the ordinary wires side. The collision boundary is deflected to the insulated wires side. A similar magneto Rayleigh-Taylor Instability structure can be observed on the both sides at the stagnant time.