
Measurement uncertainty of metallic ductility in tensile tests: intermediate temperature embrittlement and strain rate embrittlement
Author(s) -
XU Tingdong,
Zhenjun Liu,
Yu Hong-Yao,
Kai Wang
Publication year - 2014
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.63.228101
Subject(s) - embrittlement , materials science , strain rate , tensile testing , ductility (earth science) , ultimate tensile strength , tension (geology) , deformation (meteorology) , elongation , composite material , metallurgy , creep
International Standard, ISO 6892-2, Metallic Materials-Tensile Testing: Method of Test at Elevated Temperature maintained that the strain rate variations and test temperature variations can induce the measurement uncertainty of mechanical properties in tensile testing, which will imperil the reliability of tension tests. In this paper, the measurement uncertainties of shrinkage rate or elongation rate in tensile testing cross-section, intermediate temperature embrittlement and strain rate embrittlement are first described experimentally. Second, the fundamental results on the microscopic theory of elastic deformation in metals are briefly mentioned. Then the phenomena of the measurement uncertainties are explained based on the microscopic theory. It is expounded that the elastic deformation of tension tests induces the impurities to segregate to grain boundaries and the relative embrittlement which produces the measurement uncertainties of reduction in area. This work gives a theoretical basis for correcting the present standard method of tension testing to avoid the measurement uncertainty of reduction in area.