z-logo
open-access-imgOpen Access
Laser diode end-pumped continuous-wave Nd:YVO4 self-Raman laser at 1175 nm
Author(s) -
Fan Li,
Haitao Chen,
Zhu Jun
Publication year - 2014
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.63.154208
Subject(s) - materials science , raman spectroscopy , laser , diode , energy conversion efficiency , continuous wave , raman laser , optics , optoelectronics , laser diode , doping , slope efficiency , crystal (programming language) , laser power scaling , laser pumping , raman scattering , wavelength , fiber laser , physics , computer science , programming language
In this paper, an LD (laser diode) end-pumped continuous-wave Nd:YVO4 self-Raman laser at 1175 nm is reported. The doping concentration and structure of the self-Raman crystals are optimized to reduce the thermal effects of the crystal, and a high-efficient diode-end-pumped continuous-wave self-Raman laser operated at 1175 nm is demonstrated. Finally, the thermal effects are efficiently improved by using a double-end diffusion-bonded composite Nd:YVO4 crystal as a gain medium. An output power up to 3.4 W of the first-order Stokes line 1175 nm is achieved at the incident diode pump power of 25.5 W, corresponding to a diode-to-Stokes optical conversion efficiency of 13.3% and a slope efficiency of 14.6%. The Raman threshold is as low as 2.21 W of diode power at 808 nm.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom