z-logo
open-access-imgOpen Access
Equation of state of solid krypton from correlated quantum chemistry calculations
Author(s) -
N. Wu,
Yang Jiao,
Fen Xiao,
LingCang Cai,
Tian Chun-Ling
Publication year - 2014
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.63.146102
Subject(s) - krypton , many body theory , cluster expansion , physics , atomic physics , lattice (music) , cluster (spacecraft) , equation of state , materials science , molecular physics , thermodynamics , condensed matter physics , xenon , computer science , acoustics , programming language
The two-, three- and four-body interaction energies in face-centered cubic (fcc) krypton are evaluated using the many-body expansion method and the coupled cluster theory with full single and double excitations plus perturbative treatment of triples, and both self-consistent-field (SCF) Hartree-Fock energy and correlation one are accurately determined in a wide volume range (from 27 to 4 cm3/mol). All different three- and four-atom clusters existing in the first three and two nearest and two neighbor shells of fcc lattice are considered. It is found that the three-body interaction energy is positive at low compression, where the dispersive forces play a dominant role, with increasing the compression the three-body contribution becomes attractive, and the SCF energy overwhelms the dispersive one. At pressures higher than 30 GPa, the four-body contribution becomes important and significantly cancels the over-softening effects of the three-body potential. It shows that the combination of the four-body effects with two- and three-body interactions leads to an excellent agreement with the measurements from the equation of state in the whole experimental range of 0-130 GPa.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom