
Simulation of erosion of the tungsten wall by impurities in the divertor plasma
Author(s) -
Zhuo Sun,
Chaofeng Sang,
Wanpeng Hu,
Dezhen Wang
Publication year - 2014
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.63.145204
Subject(s) - divertor , tungsten , materials science , sputtering , beryllium , plasma , impurity , atomic physics , tokamak , ion , erosion , particle (ecology) , physics , nuclear physics , metallurgy , nanotechnology , geology , paleontology , quantum mechanics , thin film , oceanography
Divertor is a component that directly contacts the plasma in tokamak. To ensure the lifetime of the device, it is necessary to reduce the erosion of the divertor wall by plasma. In this work, a particle-in-cell model is used to study the influences of plasma temperature and impurity concentration on the erosion of tungsten divertor wall by carbon and beryllium ions. The steady-state sheath, particle and energy fluxes to the wall, and the energies and angle of the incident ions can be obtained. Then, these data can be used as the input parameters for the plasma-surface interaction model, to evaluate the erosion rate of the plate based on the empirical formulas for physical sputtering. It is found that the erosion by heating plays a negligible role under the plasma condition of this work. Due to the low physical sputtering threshold energy of tungsten by impurities and the impurity ions accelerated by sheath, the physical sputtering of the tungsten by the impurities plays an dominant role in the total erosion. In addition, the erosion rate increases with the increase of plasma temperature and impurity concentration.