A Nd:YAG regenerative amplifier seeded by 1064 nm picosecond fiber
Author(s) -
Lian Fu-Qiang,
Zhongwei Fan,
Bai Zhen-Ao,
Yu Jin,
Weiran Lin,
Xiaolei Zhang,
Di Liu,
Zhao Tianzhuo
Publication year - 2014
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.63.134207
Subject(s) - materials science , fiber laser , picosecond , optics , laser , amplifier , optoelectronics , pulse duration , ytterbium , wavelength , doping , physics , cmos
The picosecond pulse from 1064 nm Yb-doped all-fiber mode-locked laser is amplified by Nd: YAG regenerative amplifier. Research is focused on the influence of Yb-doped all-fiber mode-locked laser on the efficiency of energy extraction of Nd: YAG regeneration amplifier. In order to increase the efficiency of energy extraction, spectral oscillatory fringe is decreased by means of restricting the self-phase modulation of Yb-doped all-fiber mode-locked laser. The Nd:YAG regenerative amplifier produces stable pulse energy of 1.3 mJ at a repetition rate of 1 kHz, which is seeded by a Yb-doped all-fiber mode-locked laser, with a low energy of 3.2 nJ, center wavelength of 1064.1 nm, 3 dB bandwidth of 0.35 nm 11 ps duration.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom