z-logo
open-access-imgOpen Access
A low on-resistance silicon on insulator lateral double diffused metal oxide semiconductor device with a vertical drain field plate
Author(s) -
Yanmei Shi,
Jizhi Liu,
Suying Yao,
Ding Yan-Hong
Publication year - 2014
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.63.107302
Subject(s) - trench , silicon on insulator , materials science , ldmos , breakdown voltage , optoelectronics , voltage , electrical engineering , mosfet , electric field , silicon , transistor , composite material , physics , engineering , layer (electronics) , quantum mechanics
To reduce the on-resistance and enhance the breakdown voltage of silicon on insulator (SOI) lateral double diffused metal oxide semiconductor (LDMOS) device at the same time, a low on-resistance SOI-LDMOS device with a vertical drain field plate and trench gate and trench drain (VFP-TGTD-SOI-LDMOS) is proposed. The device has the features as follows: first, a trench gate and a trench drain are adopted, which can widen the vertical current conduction area, shorten the lateral current conduction path, and lower the on-resistance. Secondly, a vertical field plate is used, which modulates the electric field around it, reduces the high electric field at the end of the drain electrode, and increases the breakdown voltage. The VFP-TGTD-SOI device is compared with a conventional SOI device, a trench gate SOI device, a trench gate and trench drain SOI device with the same dimensional device parameters using the two-dimensional semiconductor simulator MEDICI. The results show that under the condition of their own highest figure of merit (FOM), the specific on-resistance value of the VFP-TGTD-SOI device is reduced by 53%, 23%, and increased by 87%, respectively and the breakdown voltage is increased by 4% and reduced by 9% and increased by 45%, respectively. By comparing the FOMs of the four structures, it can be seen that the VFP-TGTD-SOI device has the highest FOM, which indicates that among the four structures, it maintains the lower on-resistance and holds the higher breakdown voltage at the same time.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here