Open Access
Surface and interface phonon-polaritons in four layer systems consisting of polar ternary mixed crystals
Author(s) -
Bao Jin,
Yan Cui-Ling,
Zhaoxiong Yan
Publication year - 2014
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.63.107105
Subject(s) - polariton , surface phonon , phonon , condensed matter physics , materials science , ternary operation , slab , polar , crystal (programming language) , heterojunction , uniaxial crystal , optics , physics , optical axis , quantum mechanics , lens (geology) , geophysics , computer science , programming language
Surface and interface phonon-polaritons in a four-layer (vacuum/polar binary crystal slab/polar ternary mixed crystal slab/polar binary crystal substrate) system are investigated with the modified random-element-isodisplacement model and the Born-Huang approximation, based on the Maxwell's equations with the usual boundary conditions. The numerical results of the surface and interface phonon-polariton frequencies as functions of the wave-vector, composition x, and thickness of slab in the two four-layer systems, i.e., AlxGa1-xAs/GaAs and ZnxCd1-xSe/ZnSe, are obtained and discussed. It is shown that there are seven branches of surface and interface phonon-polariton modes in the heterostructure systems, and that the frequencies of the surface and interface modes vary non-linearly with the composition and thickness of slab. The “one mode” and “two mode” behaviors of the ternary mixed crystals are also shown in the dispersion curves.