Surface plasmon enhancement effect in molecular excitation
Author(s) -
Sun Xue-Fei,
Luxia Wang
Publication year - 2014
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.63.097301
Subject(s) - excitation , plasmon , surface plasmon , dipole , discrete dipole approximation , materials science , polarization (electrochemistry) , electric field , localized surface plasmon , molecular physics , atomic physics , particle (ecology) , molecule , physics , optoelectronics , chemistry , quantum mechanics , oceanography , geology
Enhancement effect of surface plasmon in the metal nano-particle is a hot topic in nano-material field. A system is investigated where a spherical metal nano-particle is placed near a dye molecule. Under the optical excitation of a polarized electric field the subsequent charge transfer dynamics for different relative positions are simulated by density matrix theory approach, where the Coulomb interaction of molecule and metal nano-particle is calculated in the framework of the dipole-dipole approximation. It is found that the enhancement effect is closely related to the relative distance between the molecule and metal nano-particle. Effect of enhancement due to the surface plasmon is discussed in detail for various coupling interactions, polarization of field, lifetime of plasmon, and non-resonant excitation; and the physical essence in the molecule-metal nano-particle coupled system is analysed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom