Open Access
Propagation of electromagnetic signals in the time-varying plasma
Author(s) -
Yang Min,
Xiaoping Li,
Yanming Liu,
Lei Shi,
Kai Xie
Publication year - 2014
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.63.085201
Subject(s) - physics , plasma , modulation (music) , amplitude , phase (matter) , signal (programming language) , optics , computational physics , acoustics , quantum mechanics , computer science , programming language
Because the boundary layer of the plasma sheath formed around the hypersonic vehicle flying in atmosphere is turbulent, the parameters of plasma sheath, such as the electron density, become time-varying. Both the amplitude and phase of electromagnetic (EM) signal are modulated by the time-varying plasma. By using a large volume uniform plasma generator, an experimental system for the propagation of EM signals in the time-varying plasma is built. The propagation experiment of the monochromatic signals and binary phase shift keying signals in S band of plasma is conducted. The modulations of the amplitude and phase of EM signal are proved, and the rotation of constellation of the multiple phase shift keying (MPSK) signal is observed. The experimental and simulation results demonstrate that the frequency of parasitic modulation is the same as that of time-varying plasma and the parasitical modulation intensity varies in proportion to the ratio of the electron density profile to the carrier frequency. Even if the carrier frequency is higher than the plasma frequency, the parasitical modulation will make the constellation of the MPSK signals circumvolve, and the bit error rate higher.