z-logo
open-access-imgOpen Access
First-principles study on p-type ZnO codoped with F and Na
Author(s) -
Shenghua Deng,
Jiang Zhi-Lin
Publication year - 2014
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.63.077101
Subject(s) - delocalized electron , doping , impurity , materials science , fermi level , density of states , condensed matter physics , density functional theory , valence (chemistry) , dopant , fermi energy , valence band , atomic physics , physics , band gap , electron , quantum mechanics
The first-principles calculations based on the density functional theory have been performed to investigate the doping behaviors of Na and F dopants in ZnO. It turns out from the calculated results of the band structure, density of states, and effective masses that in the F mono-doping case, the impurity states are localized and the formation energy is up as high as 4.59 eV. In the Na mono-doping case, the impurity states are delocalized and the formation energy decreases as low as -3.01 eV. One cannot obtain p-type ZnO in both instances On the contrary, in the Na-F codoping case, especially when the ratio of F and Na is 1:2, the Fermi-level shifts to the valence bands, the corresponding effective masses are small (0.7m0) and the formation energy is the lowest (-3.55 eV). These may indicate the formation of p-type ZnO having a good conductivity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom