
Ab initio calculation of the potential energy curves and spectroscopic properties of BP molecule
Author(s) -
Wang Wen-Bao,
Kun Yu,
Xiaomei Zhang,
Yufang Liu
Publication year - 2014
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.63.073302
Subject(s) - ab initio , dissociation (chemistry) , molecule , atomic physics , bond dissociation energy , physics , ab initio quantum chemistry methods , configuration interaction , full configuration interaction , electronic structure , ground state , potential energy , quantum mechanics , chemistry
A high-precision quantum chemistry ab initio multi-reference configuration interaction method with aug-cc-pVQZ basis sets has been used to calculate the four states of BP molecule. The four -S states are X3, 3-, 5 and 5-, which are correlated to the lowest dissociation limit of B(2Pu)+P(4Su). Analysis of the electronic structures of -S states shows that the -S electronic states are essentially multi-configurational. We take the spin-orbit interaction into account for the first time so far as we know, which makes the four -S states split into fifteen states. 30+ state is confirmed to be the ground state. The SOC effect is essential for the BP molecule, which leads to the avoided crossings for 0+ and 1 states from X3 and 3-. Based on the PECs of -S and states, the accurate spectroscopic constants are obtained by solving the radial Schrdinger equation. The spectroscopic results may be conducive to further research on BP molecule in experiment and theory.