Open Access
Characterization of typical infrared characteristic peaks of hydrogen in nitrogen and hydrogen co-doped diamond crystals
Author(s) -
Yan Bing-Min,
Xiaopeng Jia,
Qin Jie-Ming,
Sun Shi-Shuai,
Zhiyuan Zhou,
Chao Fang,
MA Hong-yan
Publication year - 2014
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.63.048101
Subject(s) - diamond , hydrogen , materials science , infrared spectroscopy , absorption (acoustics) , nitrogen , absorption spectroscopy , carbon fibers , fourier transform infrared spectroscopy , doping , analytical chemistry (journal) , hydrogen bond , infrared , chemistry , molecule , optics , organic chemistry , composite material , physics , optoelectronics , composite number
The 3107 cm-1 peak is observed in the infrared absorption spectra of all types of Ia diamonds, but it has not been observed in the iron-based catalyst. A series of nitrogen and hydrogen-doped diamond crystals is successfully synthesized using P3N5 as the nitrogen source in a catalyst-carbon system at a lower pressure and temperature (6.3 GPa, 1500 ℃). Fourier transform infrared micro-spectroscopy reveals that the hydrogen atoms existing in the synthesized diamond are in two forms. The one is attributed to the CH bond stretching (3107 cm-1) and bending (1405 cm-1) vibrations of the vinylidene group (CCH2). The other is due to sp3 hybridization CH bond symmetric (2850 cm-1) and anti-symmetric (2920 cm-1) vibrations. According to our result, we find that the 3107 cm-1 hydrogen absorption peak is related to the aggregated nitrogen in synthetic diamond. The 3107 cm-1 peak could not be observed in synthetic diamond without aggregated nitrogen, even if it has a high nitrogen concentration. And the hydrogen absorption peaks at 2920 and 2850 cm-1 are more widespread than the absorption peak at 3107 cm-1, this suggests that the sp3 CH bond more widely exists in diamond than the vinylidene group (CCH2). Infrared spectra analysis indicates that the hydrogen impurity mainly exists in the natural diamond as vinylidene group as seen from the absorption peak intensity. We believe that our results provide a new way to study the formation mechanism of the natural diamond. Moreover, the ideal synthesis condition in our system supplies a possible way for us to design n-type diamond semiconductor.