
Properties of reflecting region of periodic-structured thin film with refractive index dispersion
Author(s) -
Huasong Liu,
Dandan Liu,
Chenghui Jiang,
Lishuan Wang,
Jiang Yu-Gang,
Pengshuai Sun,
Yiqin Ji
Publication year - 2014
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.63.017801
Subject(s) - refractive index , wavelength , optics , materials science , dispersion relation , dispersion (optics) , center frequency , physics , band pass filter
Periodic structure is the basic physical model in optical film design. Universal conditions of the reflecting center wavelength are given. With the refractive index dispersion of the layers, the reflecting center wavelength and the band characteristic of equal-thickness and unequal-thickness periodic structures are studied. According to experimental results, in both the equal-thickness and unequal-thickness periodic structures with the refractive index dispersion of the coating layers, the reflecting center wavelength moves towards the longer wavelengths, and the reflective series as well as the relative wave number will depart from linear relation. For the same optical thickness of the film with unequal-thickness periodic structure, when the optical thickness of the high refractive index layer is bigger than that of the low refractive index layer, the departure from linear relation between the reflective series and the relative wave number is higher. For the low reflective series, the bandwidth of unequal-thickness periodic structure is smaller than that of equal-thickness periodic structure. The influence of the layer dispersion on the bandwidth is found to be weak.