
Noether symmetries of dynamics for non-conservative systems with time delay
Author(s) -
Yi Zhang,
Jin Shixin
Publication year - 2013
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.62.234502
Subject(s) - noether's theorem , conserved quantity , homogeneous space , infinitesimal , conserved current , mathematical physics , dynamics (music) , action (physics) , conservation law , mathematics , classical mechanics , physics , mathematical analysis , quantum mechanics , geometry , acoustics
The Noether symmetries and the conserved quantities of dynamics for non-conservative systems with time delay are proposed and studied. Firstly, the Hamilton principle for non-conservative systems with time delay is established, and the Lagrange equations with time delay are obtained. Secondly, based upon the invariance of the Hamilton action with time delay under a group of infinitesimal transformations which depends on the generalized velocities, the generalized coordinates and the time, the Noether symmetric transformations and the Noether quasi-symmetric transformations of the system are defined and the criteria of the Noether symmetries are established. Finally, the relationship between the symmetries and the conserved quantities are studied, and the Noether theory of non-conservative systems with time delay is established At the end of the paper, some examples are given to illustrate the application of the results.