
Chaotic laser parallel synchronization and its application in all-optical logic gates
Author(s) -
Shihao Yan
Publication year - 2013
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.62.230504
Subject(s) - synchronizing , synchronization (alternating current) , computer science , xnor gate , logic gate , chaotic , synchronization of chaos , control theory (sociology) , algorithm , telecommunications , nand gate , channel (broadcasting) , artificial intelligence , control (management) , transmission (telecommunications)
We present a “master-slave-response” synchronization system of chaotic multiple-quantum-well lasers. And we study the applications of chaotic parallel synchronization for optical logic gates. An injection multiple-quantum-well laser drives two responding systems of multiple-quantum-well lasers to obtain chaotic synchronization while the injection multiple-quantum-well laser can synchronize the responding systems. We present theoretically the constructions of the fundamental all-optical gates based on the parallel synchronization of responding systems and define their computational principle. By modulating the driving light into the responding systems, all-optical logic gates characterizing logic function are realized by synchronizing or unsynchronizing appropriately the two chaotic states of responding systems. We present all-optical XNOR, NOR, NOT logic gates and their logic computational methods. Numerical simulation result validates the feasibility of the system.