z-logo
open-access-imgOpen Access
Characteristics of lightning radiation source distribution and charge structure of squall line
Author(s) -
Dongxia Liu,
Xiushu Qie,
Zhichao Wang,
Xiaoguo Wu,
Lei Pan
Publication year - 2013
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.62.219201
Subject(s) - squall line , lightning (connector) , meteorology , thunderstorm , convection , precipitation , atmospheric sciences , geology , upper atmospheric lightning , lightning detection , lightning strike , environmental science , physics , power (physics) , quantum mechanics
Lightning information indicates the intensity and the development of severe convection. The characteristics of lightning activity and charge structure of a squall line over Beijing on 13 June 2010 are analyzed by using the SAFIR3000 lightning detection data, Doppler weather radar and precipitation data. Results show that the lightning radiation sources are the major part in the convective leading region with a high reflectivity in front of the squall line, and the number of lightning radiation sources gradually increases in the back of stratiform region only at the dissipating stage. The correlation coefficient between the total lightning and convective precipitation is found to be 0.82, and that of intra-cloud lightning and convective precipitation is 0.76. It is inferred that the lightning is closely related to dynamical and microphysical processes of the squall line. According to the lightning radiation distribution, the charge structure of squall line is also discussed. At the mature stage of the squall line, the lightning radiation sources have two layers with the upper level centered at 11 km and the lower level at 6 km. Based on the bidirectional leader of lightning propagation and by assuming VHF source density maxima being most likely associated with the positive charge region, it is concluded that the squall line is characterized by a tripole charge structure with a middle charge region between the levels of 8 km and 10 km, and the two positive charge regions at the levels of 10 to 12 km and 4 to 7 km above the ground, respectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here