z-logo
open-access-imgOpen Access
Stability study on high sensitive CO monitoring in near-infrared
Author(s) -
Xia Hua,
Bian Wu,
Zhirong Zhang,
Tao Pang,
Dong Fengzhong,
Yu Wang
Publication year - 2013
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.62.214208
Subject(s) - materials science , tunable diode laser absorption spectroscopy , laser , optoelectronics , infrared , sensitivity (control systems) , linearity , detection limit , optical path , diode , optics , near infrared spectroscopy , optical fiber , tunable laser , electronic engineering , physics , wavelength , chemistry , chromatography , engineering
CO is an indicative gas of coal spontaneous combustion warning and mine production safety instruction, whose detection process generally requires fiber long-haul transmission. However, currently, the communication fiber windows are mainly in the near-infrared band, so it is very significance to realize highly sensitive CO detection at near-infrared band. Tunable diode laser absorption spectroscopy (TDLAS) technology has advantages of high sensitivity, high resolution, fast response ability and no-contact, which has been widely used in air pollution monitoring, industrial and agricultural production process control, and many other fields. Long-path multi-pass cell can effectively improve the TDLAS detection capabilities, at the same time, the whole system is more compact. In this paper, 1566.64 nm DFB laser and the novel multi-pass cell with an optical path 56.7 m are used to detect different CO concentrations in long-term, while the system stability and linearity are analyzed. In addition, the detection limit is 0.25 ppmv with 30 s integration time by calculating the Allan variance. It means that we have primarily achieved highly sensitive detection of CO in the near-infrared bands.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom