z-logo
open-access-imgOpen Access
Light absorption enhancement in polymer solar cells with nano-Ag
Author(s) -
Guolong Li,
何力军 He Lijun,
Jin Li,
Li Xue-Sheng,
Liang Sen,
高忙忙 Gao Mangmang,
Haiwen Yuan
Publication year - 2013
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.62.197202
Subject(s) - materials science , absorption (acoustics) , solar cell , pedot:pss , optoelectronics , active layer , polymer , surface plasmon resonance , polymer solar cell , light scattering , nano , doping , layer (electronics) , optics , scattering , nanoparticle , nanotechnology , composite material , physics , thin film transistor
The thickness of an active layer is limited by its low mobility of carriers in a polymer solar cell composed of the blend bulk-heterojunction formed by P3HT as donor material and PCBM as acceptor material, which can affect the light absorption of the polymer solar cell. Metal nanocrystals-doped polymer active layer can enhance its inner electrical field and absorb light due to the surface plasmon resonance (SPR) effect of the nanocrystals. Two-dimensional electrical field distributions in the polymer solar cells are simulated based on finite difference time domain (FDTD) approach, under the assumption that the diameter of doping nano-Ag is 50 nm, the distance between two nanocrystals is 50nm and the incident light wavelength is 400 nm or 500 nm. The electrical field distributions over the cross-section of nano-Ag are also simulated at the incident light angle of 15°, 45°, 60°, respectively. The light absorption of different devices are calculated, in which the sizes of nano-Ag take 10 nm, 20 nm and 50 nm, respectively, Particles of nano-Ag are dispersed in PEDOT:PSS layer. Moreover, the light absorption is calculated at the incident light angles of 15°, 45°, 60°, respectively. Results show that the electrical field is redistributed due to the SPR effect caused by nano-Ag in the polymer active layer. A larger size of nano-Ag leads to light scattering in a wider angle, thus results in more light absorption by the device. Here, the colloid of nano-Ag is prepared from an organic salt of Ag, and the polymer solar cell with nano-Ag is fabricated in the structure of glass /ITO (100 nm) /PEDOT:PSS (40 nm) /P3HT:PCBM (100 nm)/(nano-Ag) /LiF (1 nm) /Al (120 nm). Furthermore, experimental results show that the nano-Ag doped in P3HT:PCBM layer increases light absorption and improves the electrical performance of the device, which enhances the incident photon conversion efficiency (IPCE) in spectrum at 520nm by 17.9%.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom