z-logo
open-access-imgOpen Access
The ab initio potential energy curve of HNO(1A’)
Author(s) -
Han Xiao-Qin,
Xiao Xia-Jie,
Yufang Liu
Publication year - 2013
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.62.193101
Subject(s) - ab initio , potential energy , saddle point , ab initio quantum chemistry methods , materials science , atomic physics , ground state , molecule , chemistry , computational chemistry , physics , geometry , mathematics , organic chemistry
The ab initio coupled-cluster theory and the configuration interaction method have been used to optimize the possible ground state structures of NH, NO and HNO. The potential energy functions of HNO have been derived from the many-body expansion theory. In the symmetric stretching vibration and rotation potential energy diagram of HNO, there are saddle points in reaction kinetics O+NH→HNO, H+NO→HNO, N+HO→HNO, when O, H, N atoms with the energies surpassing 1.153 eV, 1.683 eV, 2.216 eV respectively, a stable HNO molecule could be formed. These are reported for the first time so for as we know. In addition, It is reported that the position of HNO’s isomer in the curve and the energy of transition from HNO to HON are also determined.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom