z-logo
open-access-imgOpen Access
Dual-channel chaos synchronization and communication based on a vertical-cavity surface emitting laser with double optical feedback
Author(s) -
Deng Wei,
Guang-Qiong Xia,
Wu Zheng-Mao
Publication year - 2013
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.62.164209
Subject(s) - vertical cavity surface emitting laser , physics , synchronization (alternating current) , optical chaos , channel (broadcasting) , chaotic , laser , optical communication , polarization (electrochemistry) , optoelectronics , semiconductor laser theory , optics , computer science , telecommunications , chemistry , artificial intelligence
Using two orthogonal polarization mode outputs from a vertical-cavity surface emitting lasers (VCSEL) with double optical feedback as two chaotic carriers, a dual-channel chaos secure communication system is established, and the synchronization and communication performances of such a system are numerically investigated. The results show that under suitable operated condition, the time-delay signatures of two chaotic carriers originating from two linear polarization modes in the T-VCSLE with double optical feedback can be suppressed efficiently. Under the strong injection locking case, high-quality chaos synchronization between two corresponding modes of T-VCSEL and R-VCSEL can be realized by polarization-preserved optical injection from T-VCSEL to R-VCSEL. Moreover, the tolerance of the synchronization quality on the frequency detuning between T-VCSEL and R-VCSEL is enhanced with the increase of the injection strength. Adopting additive chaos modulation encryption scheme, two pieces of 500 Mbit/s encoded message can be hidden efficiently in the two chaotic carriers in the propagation process and can be successfully extracted at the receiver. Although Q factor decreases with the increase of message transmission rate, the values of Q factor for two channels are still larger than 6 for 6 Gbit/s message.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom