Plasma characterization studies of laser dressing for bronze-bonded diamond wheel by a pulsed fiber laser
Author(s) -
Genyu Chen,
Deng Hui,
XU Jian-bo,
Li Zong-Gen,
Ling Zhang
Publication year - 2013
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.62.144204
Subject(s) - materials science , laser , plasma , electron temperature , optics , atomic physics , wavelength , optoelectronics , physics , quantum mechanics
In this paper, we present the optical emission studies of the spatial evolution of plasma during pulsed fiber laser dressing of bronze-bonded diamond grinding wheel and especially investigate the plasma light emission, which is measured through a high sensible optical spectrometer. Space-resolved spectra in a wavelength range of 500-600 nm are measured at different laser average powers and pulse repetition frequencies, and the intensity of spectral lines achieves a maximum intensity at about 2.4 mm away from the surface of the grinding wheel. The electron temperature is determined by employing the Boltzmann plot method under the assumption of local thermodynamic equilibrium using six Cu (I) lines, and the highest electronic temperature is calculated to be 4380 K at about 3 mm away from the surface of wheel. Finally the effect of the laser parameters on the electron temperature of the plasma is studied, and the results show that there are different variation laws in the electron temperature of the plasma with laser average power and pulse repetition frequency.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom