Line focusing characteristics of axicon illuminated by non-diffracting Bessel beam
Author(s) -
Tuanjie Du,
Tao Wang,
Wu Feng-Tie
Publication year - 2013
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.62.134103
Subject(s) - axicon , bessel beam , optics , bessel function , physics , beam (structure) , diffraction , laser , laser beams
The line focusing characteristics of axicon illuminated by non-diffracting Bessel beam was analyzed in terms of Hankel theory and diffraction integral theory, and a new kind of method to generate periodic bottle beam was put forward, i.e. Talbot effect bottle beam was generated by axicon illuminated by non-diffracting Bessel beam. Intensity distributions along the propagation path and the intensity evolution of the bottle beams in a complete period after the axicon illuminated by non-diffracting Bessel beam were simulated numerically. An optical system was designed and Bessel-like beam was obtained by light wave emitted from He-Ne laser passing through axicon after the optical system, and then an axicon was used to focus the Bessel-like beam. Periodic bottle beam was then observed after the axicon, and the spot diagram of two periodics were taken by a CCD camera. Experimental results agree well with the theoretical analysis. This result has a practical significance in multi-plane micro-manipulation and may serve as a guideline in optical micro-control by periodic bottle beam.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom