
Study on the atomic and electronic structures of BiOCl{001} surface using first principles
Author(s) -
Guoqi Li,
Xiaochao Zhang,
Guoyu Ding,
Caimei Fan,
Liang Zhen,
Peide Han
Publication year - 2013
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.62.127301
Subject(s) - materials science , density functional theory , band gap , surface (topology) , valence (chemistry) , surface energy , surface states , electronic band structure , chlorine , conduction band , chemical physics , density of states , condensed matter physics , molecular physics , computational chemistry , chemistry , optoelectronics , physics , composite material , electron , geometry , mathematics , organic chemistry , quantum mechanics , metallurgy
The surface relaxations, band structures, densities of states and surface energies of BiOCl{001} surfaces containing {001}-1Cl, {001}-BiO and {001}-2Cl are studied using first-principles based on density functional theory. The calculated results indicate that there exist obvious relaxations for the three types of {001} surfaces, especially for their double chlorine layers. The relaxation result of {001}-1Cl surface is the minimum one in the BiOCl{001} surfaces. Compared with the electronic structure of bulk BiOCl, BiOCl{001} surfaces exhibit the smaller band gap and stronger localized energy levels. Besides, both conduction and valence band of {001}-BiO shift towards the lower energy and there exist surface states at the bottom of conduction band. For {001}-2Cl, surface states are located at the top of valence band. The occurrences of these surface states can lead to the obvious reductions of band gaps for {001}-BiO and {001}-2Cl. Furthermore, the surface energy of BiOCl{001} is calculated and investigated. The analysis results show that surface energies of {001}-1Cl, {001}-BiO and {001}-2Cl are 0.09206 J·m-2, 2.392 J·m-2 and 2.461 J·m-2, respectively. Thus the {001}-1Cl possesses the minimum surface energy and the highest stability, while {001}-BiO and {001}-2Cl exhibit the higher reaction activities and are difficult to be exposed in the growth process of BiOCl crystal. Our obtained results provide the theoretical guidance for the further understanding of the facet-dependent photoreactivity of BiOCl, the fine manipulation of their photoreactivity, and the progress of actual application for BiOCl photocatalytic material.