
Study of carbon atomic wire C5 in the laser field by time-dependent density functional theory
Author(s) -
Zhiping Wang,
Jian Chen,
Wu Shou-Yu,
Wu Ya-Min
Publication year - 2013
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.62.123302
Subject(s) - atomic physics , excitation , ionization , laser , dipole , polarization (electrochemistry) , materials science , electron , ion , physics , optics , chemistry , quantum mechanics
Combining the time-dependent density functional theory with molecular dynamics of ions the excitation of the carbon wire C5 is explored. It is found that the stronger the laser intensity, the more energies are absorbed by C5 and the earlier the ionization takes place and the more electrons are emitted when considering the effect of the laser intensity on the excitation of the carbon wire C5. The study of the influence of the polarization of the laser pulse on the excitation of C5 indicates that the ionization is enhanced and the dipole moment along the laser polarization is strengthened when the laser polarization is along the molecular axis, and the x-direction polarized laser pulse can only excite the dipole oscillation along the x axis, and the y-direction polarized one can only excite Dy. Furthermore, it is found that the synchronicity of the vibration of carbon bonds changes a little due to the enhanced ionization when the laser polarization is along the molecular axis, while the vibration modes of ionized carbon wire C5 are the same as those of the neutral carbon wire C5.