High-gain reduced-order observer-based synchronization for a kind of uncertain chaotic system
Author(s) -
Dong Han,
Fanglai Zhu
Publication year - 2013
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.62.120513
Subject(s) - observer (physics) , synchronization (alternating current) , computer science , control theory (sociology) , chaotic , matching (statistics) , signal (programming language) , chaos (operating system) , state observer , nonlinear system , mathematics , control (management) , artificial intelligence , physics , telecommunications , channel (broadcasting) , statistics , computer security , quantum mechanics , programming language
In this paper we consider the issues of chaos synchronization and chaos-based secure communication when the so-called observer matching condition is not satisfied. An auxiliary drive signal vector is introduced such that the observer matching condition is satisfied. High-gain observers are employed to estimate the auxiliary drive signals as well as their derivatives in a finite time by using the drive signals of original system. Then, a kind of reduced-order observer is constructed which can directly eliminate the influence of the non-linear part and the disturbances of the system. Based on the estimates of states as well as the estimates of the auxiliary signals and their derivatives, a kind of message information recovery method is proposed. Finally, the Rössler chaotic system is used as a simulation example to verify the effectiveness of the proposed method.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom