z-logo
open-access-imgOpen Access
Application of a fractional algorithm to studying the competition between dissipation and fluctuation in non-Markov process
Author(s) -
Lin Fang,
Hu Danqing,
Li Le-Le
Publication year - 2013
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.62.120503
Subject(s) - dissipation , statistical physics , markov process , markov chain , random walk , physics , diffusion , variable (mathematics) , langevin equation , stochastic process , competition (biology) , mathematics , mathematical analysis , quantum mechanics , statistics , ecology , biology
Based on fractional Langevin equation and random walk theory, a numerical algorithm that can be applied to non-Markov long-memory system is established in this paper. In addition, the evolution behaviour of random variable ruled by fractional sub-diffusion equation is numerically studied in three conditions: no dissipation, no fluctuation and both being present. The results show that competition exists between dissipation and fluctuation. As time goes by, the effect of Guassian fluctuation weakens and damping plays a main role in the evolution of system; however, because of the existance of "rare-though-dominant" events, long-tail fluctuation makes the evolution of system abrupt change at a certain probability.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom