All-normal-dispersion multi-wavelength mode-locked dissipative soliton Yb-doped fiber laser
Author(s) -
Xu Zhong-Wei,
Zuxing Zhang
Publication year - 2013
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.62.104210
Subject(s) - dissipative soliton , fiber laser , optics , dissipative system , wavelength , zero dispersion wavelength , laser , dispersion (optics) , dispersion shifted fiber , physics , materials science , soliton , optical fiber , fiber optic sensor , nonlinear system , quantum mechanics
An all-normal-dispersion multi-wavelength mode-locked dissipative soliton Yb-doped fiber laser with a periodic birefringence fiber filter is investigated in this paper. Numerical simulations show that multi-wavelength dissipative solitons can be generated by adding a filter into the fiber laser, and adjusting the bandwidth of filter can generate multi-wavelength dissipative solitons with different wavelength numbers and separations. Dissipative soliton molecules (DSM) can be observed in four- and five-wavelength dissipative solitons. Adjusting the parameters of the filter and saturation power can change the number and wavelength of DSM in the multi-wavelength pulses. This is the first time that multi-wavelength mode-locked dissipative solitons with DSM generated from mode-locked fiber laser have been observed, and that the dual-wavelength mode-locked disspative solitons have been obtained from an all-normal-dispersion Yb-doped fiber laser in experiment.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom