
The influence of bias conditions on ionizing radiation damage of NPN and PNP transistors
Author(s) -
Xingji Li,
Lan Mu-Jie,
Chaoming Liu,
Jianqun Yang,
Zhihui Sun,
Liyi Xiao,
Song He
Publication year - 2013
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.62.098503
Subject(s) - bipolar junction transistor , materials science , transistor , optoelectronics , common emitter , irradiation , fluence , semiconductor , electrical engineering , physics , voltage , nuclear physics , engineering
Bipolar junction transistors (BJTs), as important electronic components in analog or mixed-signal integrated circuits (ICs) and BiCMOS (Bipolar Complementary Metal Oxide Semiconductor) circuits, are employed in the space environment. Therefore, the research on characteristics and mechanisms of ionization damage in the BJTs is very important. Lower energy electrons are used as irradiation source to study the ionization damage in NPN and PNP transistors. Various bias conditions are imposed on the emitter-base junction to reveal the different bias conditions that contribute to the radiation effect on NPN and PNP transistors during irradiation processing. The semiconductor parameter analyzer, Keithley 4200-SCS, is used to measure the change of electrical parameters of transistors with increasing electron irradiation fluence in situ. Based on the measurement results, we find the degradation of transistors is severe under reverse emitter-base bias, and is lowest under forward emitter-base bias, while it is medium under zero emitter-base bias at a given irradiation fluence.