z-logo
open-access-imgOpen Access
Photothermal response of extracellular solution to the near-infrared laser irradiation determined by its optical absorption properties
Author(s) -
Kuiwen Guan,
Xinyu Li,
Jia Liu,
Sun Chang-Sen
Publication year - 2013
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.62.058702
Subject(s) - photothermal therapy , materials science , laser , absorption (acoustics) , photothermal effect , attenuation coefficient , irradiation , wavelength , optics , optoelectronics , infrared , nanotechnology , composite material , physics , nuclear physics
Photothermal effect has been proved to mediate the interaction of near-infrared laser with biological tissue. However, the generation and transformation mechanism of the photothermal effect is still unclear. In this paper, we combine a patch clamp technique with the laser simulation to figure out the chromophores, which are responsible for the photothermal effect generation. This method is based on the fact that temperature dependence of solution can be measured as resistance changes. A dual-wavelength infrared light irradiating the open pipette in extracellular solution is designed to study the relation between the photothermal effect and the absorption property of solution. The principle is based on that the nearly ten times difference in the magnitude of the optical absorption coefficient in water (0.502 cm-1 at 980 nm and 0.0378 cm-1 at 845 nm), makes the corresponding proportional absorption-driven temperature rise. The photothermal effect in laser-tissue interaction can be assessed in two stages: the establishment and the dissipation of the temperature rise. In the establishment stage, an open pipette method is employed to measure the temperature rise by fabricating a glass pipette which is filled with electrolyte solution. In the dissipation stage, the electrophysiological function of a living neuron cell is studied based on a patch clamp. Theoretical calculation and experimental results show that the optical absorption properties of solution determine the photothermal effect. The results can be used to study the photothermal effect in laser-tissue interaction.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here