z-logo
open-access-imgOpen Access
Recent progress in preparation of material and device of two-dimensional MoS2
Author(s) -
Lai Zhan-Ping
Publication year - 2013
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.62.056801
Subject(s) - molybdenum disulfide , nanoelectronics , graphene , materials science , nanotechnology , semiconductor , transistor , layer (electronics) , band gap , engineering physics , optoelectronics , electrical engineering , physics , voltage , composite material , engineering
After several decade developments the critical dimension of an integrated circuit will reach its limit value in the next 10-15 years, and the substitute materials been to be researched. Graphene has beed considered the most likely candidate, however, pristine graphene does not have a bandgap, a property that is essential for many application, including transistors. The two-dimensional layer of molybdenum disulfide (MoS2) has recently attracted much attention due to its excellent semiconductor property and potential applications in nanoelectronics. The device preparation, two-dimensional material research and property analysis of MoS2 are summarized and the trend for future research on large sigle-layer MoS2 crystal is presented.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom