
Simulation and experimental results of evacuation of pedestrian flow in a classroom with two exits
Author(s) -
Chen Liang,
Ren-Yong Guo,
Na Ta
Publication year - 2013
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.62.050506
Subject(s) - pedestrian , cellular automaton , computer science , simulation , emergency evacuation , transport engineering , artificial intelligence , physics , meteorology , engineering
A microscopic pedestrian model based on cellular automata is proposed and three groups of experiments on pedestrian evacuation from a double-exit room are conducted to investigate the route choice of pedestrians during evacuation. In the model, the route-choice behavior of pedestrians is affected by the route distance from the pedestrians to the exit, the capacity of the frontal route, and the repulsive force between pedestrians. Through the analysis of the video recordings, certain conclusions related to the route choice of pedestrians in these experiments are obtained. Model parameters are calibrated by the experimental data. Simulation results indicate that the model can reproduce the evacuation behavior of pedestrians in the room effectively and evacuation time is an increasing linear function of student number. The present study is helpful for devising evacuation strategies and schemes in buildings that are similar to the room.