Photo-conductivity decay properties of Fe-doped congruent lithium niobate crystals
Author(s) -
Xiaolan Chen,
Yun Zhang,
Ran Qi-Yi
Publication year - 2013
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.62.037201
Subject(s) - lithium niobate , materials science , conductivity , polaron , exponential decay , doping , electron , potassium niobate , saturation (graph theory) , crystal (programming language) , analytical chemistry (journal) , ion , lithium (medication) , electrical resistivity and conductivity , laser , atomic physics , optics , physics , chemistry , optoelectronics , ferroelectricity , mathematics , chromatography , quantum mechanics , combinatorics , computer science , nuclear physics , dielectric , programming language , medicine , endocrinology
Photo-conductivity transient processes of Fe:LiNbO3 congruent crystals are investigated by electro-chemical analyzer. The experiments are executed with Fe:LiNbO3 crystals of different Fe concentrations in the conditions of different laser intensities. The results show that the transient photo-conductivity of the Fe-doped lithium niobate crystal is formed through a complex process of electron transport; the decay of photo-conductivity can be fitted to an exponential function and a stretched-exponential function. The dependences of the fitting parameters on laser intensity and iron-doped concentration are measured. The values of amplitudes σ1max, σ2max, time constant τ2 and stretching factor β increase strongly at low intensities, and τ2 and β reach their saturation value for higher intensities; with the increase of the concentration of Fe ions, the values of σ1max, σ2max and τ2 incerease, but β decreases. With experimental results, we propose a charge transfer model which includes the migration of electrons in the conduction band and the jumping of electrons between small-polarons. The model better explains the main features of photo-conductivity decay for Fe-doped congruent lithium niobate crystals.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom