Numerical study of double tearing mode instability in viscous plasma
Author(s) -
Zheng Shu,
Zhang Jia-peng,
Ping Duan,
Lai Wei,
Wang Xian-Qu
Publication year - 2013
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.62.025205
Subject(s) - tearing , instability , slab , physics , scaling , plasma , viscosity , mode (computer interface) , nonlinear system , electrical resistivity and conductivity , mechanics , rational surface , phase (matter) , geometry , thermodynamics , mathematics , computer science , operating system , quantum mechanics , geophysics
The scalings of double tearing mode (DTM) with various values of resistivity and viscosity have been investigated numerically by using a magneto hydrodynamic model in slab geometry. It is found that the growth rate changes from γ∝η3/5ν0 to γ∝η5/6ν-1/6 when the distance between two rational surfaces 2xs is sufficiently large. On the other hand, when the distance between two rational surfaces 2xs is very small, the scaling of γ and η and ν changes from γ∝η1/3ν0 to γ∝η2/3ν-1/3 as the viscosity increases. Moreover, the nonlinear evolution of symmetrical DTM is investigated in this paper. The study shows that the symmetrical DTM transforms to unsymmetrical DTM in the final phase.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom