Experimental study on frequency stabilization method of internal-mirror He-Ne laser
Author(s) -
Qian Jin,
Zhongyou Liu,
Shi Chunying,
Xiuying Liu,
Jianbo Wang,
Cong Yin,
Shan Cai
Publication year - 2013
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.62.010601
Subject(s) - laser , materials science , optics , beat (acoustics) , laser power scaling , signal (programming language) , laser cooling , thermal , physics , thermodynamics , computer science , programming language
Frequency of an internal-mirror He-Ne laser is stabilized by using a micro cooling fan, instead of traditional heating method. Both the relationship between driving voltage and rotating speed and the thermal expansion of the intermal-mirror laser are discussed. The cavity length of the laser is controlled and adjusted by air cooling. The frequency stabilization is based on a theory of power balance between two longitudinal modes. The average temperature of the laser tube is less than 50 ℃ when the frequency is stabilized. A frequency fluctuation of less than 1.4 MHz in 20 h and a frequency relative standard uncertainty of U=4.710-9 in 4 months are evaluated by measuring the beat signal with a high-precision laser stabilized by iodine.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom