Tunable high efficiency broadband second-harmonic conversion in quasi-phase matching
Author(s) -
Ming Yin,
Shouhuan Zhou,
Feng Guo-Ying
Publication year - 2012
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.61.234206
Subject(s) - energy conversion efficiency , broadband , materials science , harmonic , quasi phase matching , phase (matter) , optics , wavelength , second harmonic generation , optoelectronics , physics , acoustics , laser , quantum mechanics
High efficiency broadband second-harmonic conversion plays an important role in communication, signal processing, spectroscopy and so on. In general, the study of high efficiency broadband second-harmonic conversion focuses on a few of wavelengths. For obtaining tunable high efficiency broadband second-harmonic conversion in quasi-phase matching, the group-velocity and quasi-phase matched condition are analyzed. The temperature effect on high-efficiency broadband second-harmonic conversion in types 0 and Ⅰ quasi-phase matched condition for 5 mol% periodically poled LiNbO3 and periodically poled LiNbO3 is studied. The results show that 15 nm and 341 nm tunable high efficiency broadband second-harmonic conversions are obtained in types 0 and Ⅰ quasi-phase matched conditions for 5 mol% periodically poled LiNbO3; 44 nm and 98 nm tunable high efficiency broadband second-harmonic conversions are obtained in types 0 and Ⅰ quasi-phase matched condition for periodically poled LiNbO3. The range of high efficiency broadband second-harmonic conversion wavelength is expanded.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom