
Preparation and red long-lasting luminescence properties of Eu3+ doped CaO
Author(s) -
Hailing Li,
Yinhai Wang,
Wan-Xin Zhang,
Xian-Sheng Wang,
Hui Zhao
Publication year - 2012
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.61.227802
Subject(s) - luminescence , materials science , afterglow , phosphor , analytical chemistry (journal) , doping , crystal structure , calcium titanate , crystallography , ceramic , chemistry , physics , optoelectronics , gamma ray burst , chromatography , astronomy , composite material
The red long-persistent phosphor CaO: Eu3+ is prepared by a co-precipitation method with further thermal decomposition. The X-ray diffraction analysis shows that the crystal structure of calcium carbonate sample transforms into a single-phase structure and then generates a single-phase calcium oxide structure with the increase of sintering temperature. The excitation spectrum of CaO: Eu3+ shows a broad band around 255 nm, which is attributed to the charge transfer of Eu3+-O2-, and a sharp peak at 393 nm. The emission spectral limes of sample correspond to Eu3+ transitions between 5D and 7FJ (J=0, 2, 3, 4) electron configurations. The red long afterglow is observed at room temperature. A trap level located at 0.69 eV is found by thermolumihnescence measurement, which arises from the fact that Eu3+ is substituted for Ca2+ and enters into the lattice The afterglow luminescence mechanism of sample was discussed according to quantum tunneling.