z-logo
open-access-imgOpen Access
Extended Holme-Kim network model and synchronizability
Author(s) -
Dan Wang,
Yuanwei Jing,
Binbin Hao
Publication year - 2012
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.61.220511
Subject(s) - complex network , exponent , triad (sociology) , computer science , economic shortage , node (physics) , mechanism (biology) , topology (electrical circuits) , scale free network , network model , mathematics , artificial intelligence , physics , combinatorics , psychology , philosophy , linguistics , quantum mechanics , government (linguistics) , world wide web , psychoanalysis
The relations between two highly clustered scale-free network evolution mechanisms and synchronizability are studied in this paper. Firstly, we propose an extended Holme and Kim (EHK) model with adjustive clustering coefficients and power-law exponent based on the Holme and Kim (HK) model. Triad formation mechanism is extended among old nodes compared with the HK model. And the following shortages of HK modle are settled: there is no link evolution in old nodes and the numbers of links of a new node adding to network is fixed. Secondly, the effect of triad formation on synchronizability in an unweighted network is investigated. Finally, simulation results show that the triad formation mechanism can weaken the synchronizability of both types of networks.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom